Differentiation Rules

Computing derivative values through use of the definition of derivative (the limit we learned), can be extremely tedious, and sometimes very difficult. There are several shortcuts that we can use to compute derivatives more easily.

1. The Derivative of a Constant: $\frac{d}{d x}[c]=$ \qquad
2. The Power Rule: $\frac{d}{d x}\left[x^{n}\right]=$ \qquad
3. The Constant Multiple Rule: $\frac{d}{d x}[c \cdot f(x)]=$ \qquad
4. The Sum/Difference Rule: $\frac{d}{d x}[f(x) \pm g(x)]=$ \qquad
5. Derivative of Sine: $\frac{d}{d x}[\sin x]=$
6. Derivative of Cosine: $\frac{d}{d x}[\cos x]=$ \qquad

Math 250 - Sect.2.2: The Derivative Rules

With these 6 rules together, we can differentiate many functions quickly and easily. -examples- Find the derivative for each of the following.
a. $y=x^{3}+4 x^{2}+9 x-15$
b. $y=x^{4}-5 x^{3}+7 x^{2}-2 x+8$
c. $f(x)=4 \sqrt{x}-\frac{5}{x^{3}}+\frac{x}{5}$
d. $g(t)=2 t^{3}-\frac{4}{t}+t$
e. $y=\frac{3}{4 x^{5}}$

Math 250 - Sect.2.2: The Derivative Rules
f. $g(t)=\frac{5 t^{3}-4 \sqrt{t}}{t^{2}}$
g. $y=3 \sin t-\frac{\cos t}{6}$

Applications.

1. Find the equation of the line tangent to the graph of $f(x)=-x^{2}+5 x-3$ when $x=2$
2. Find where the curve in $\# 1$ has a horizontal tangent line.

RATES OF CHANGE: Remember that the derivative is a function that describes the slope of a curve. The slope of a curve can also represent the rate of change of one quantity with respect to another.
-example- A ball is thrown off a 450 ft . cliff with an initial velocity of $-20 \mathrm{ft} / \mathrm{sec}$. The position of the ball above the ground is given by the function:
$s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}$, where $g=-32 f t / \mathrm{sec}^{2}, \quad v_{0}=$ initial velocity, and $s_{0}=$ initial height
a. Write the function to represent the height of this ball at time t.
b. Find the AVERAGE VELOCITY of the ball during the first 3 seconds of flight.
c. Find the INSTANTANEOUS VELOCITY at time $t=2$.

DRAW A GRAPH TO REPRESENT THIS:

